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The thermodynamic correlat ion functions of the Luttinger model are 
computed. The main tool is a precise bosonization formula for the fermion 
field. 
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1. INTRODUCTION 

This paper is organized as follows. In Section 2 we review the history of  the 
Luttinger model. In Section 3 the model is described more precisely and the 
derivation of thermodynamic correlation functions is given. The latter part 
has been announced previously in Ref. 28. 

Additional material is contained in several appendices. In Appendix A 
we remind the reader of the relation between the massive, two-dimensional, 
nonrelativistic and the massless, relativistic fermion field. Appendix B con- 
tains a proof  of the bosonization formula for the free, massless fermion 
field. Technicalities pertinent to the derivation of the thermodynamic correla- 
tion functions are contained in Appendix C. In Appendix D several examples 
of  correlation functions are discussed. 

2. ON THE HISTORY OF THE LUTTINGER MODEL 

The dynamics of the Luttinger model (1~ is defined in terms of  the 
Hamiltonian 

f: f: H = dx :•*i ~0~b:(x) + dx dy .~ (x )V(x  - y ) j " (y )  (2.1) 
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~b is a two-component relativistic fermion field in one space and one time 
dimension, L is the length of the periodic box, Jr is the current of the fermion 
field, and V is the interaction potential. If the length is infinite and the inter- 
action strictly local, i.e., V(x) = 3(x), the Hamiltonian defines the Thirring 
model52'18'19) Of course, some care is required in order to make sense out 
of all the quantities involved, such as composite fields, thermodynamic 
limit, etc. In this section, however, we will not be concerned with such 
questions. 

The literature on the Luttinger model up to 1965 was discussed by 
Lieb and Mattis. ~*) The historical development up to 1964 of two-dimensional 
models of quantum field theory, in particular of the Thirring model, is 
reviewed in the Cargrse lectures of Wightman31~) We will sketch this period 
briefly and then mention some more recent work. 

The original motivation for the study of the Thirring and Luttinger 
models was to obtain information about interacting fermion systems. When 
Tomonaga ~8) in 1950 proposed his model for massive, nonrelativistic fermions 
in one space dimension he made some assumptions to make his model more 
manageable. Luttinger then proposed a Hamiltonian which already contains 
those approximations from the beginning. The nature of the approximations 
makes it clear that the spin degree of freedom in the Thirring model corre- 
sponds in the Luttinger model to the direction of the momentum of the 
fermions. For details on the relation of the Tomonaga model to the Luttinger 
model we refer to Chapter 4 of the book by Lieb and Mattis ~4) (see also 
Ref. 5). At that time it was expected that systems with many fermions would 
exhibit bound states, collective modes or plasmons, in terms of which the 
model could be described more easily. In fact this turned out to be correct 
and provided the key to the solution of the Luttinger model and the solution 
of the Thirring model as well. 

The Luttinger model was solved by Lieb and Mattis. ~6) The solution 
showed interesting structures, e.g., a nontrivial spectrum. Hence it attracted 
much attention and proved to be an excellent laboratory for checking the 
validity of approximations and testing new ideas. Thus it became clear that 
perturbation theory does in general give a wrong answer, e.g., to the question 
of whether there is a Fermi surface or not, (6~ and that a random phase ap- 
proximation gives good results for the correlation functions and the spectrum 
but incorrect results for the momentum distribution function. (7) For field 
theory the Thirring model was particularly useful because it permitted a 
thorough analysis of operator product expansions. Cs'9) 

Generalizations of the Luttinger model were being discussed soon after 
Luttinger's original article. In 1965 Mattis (~~ and Overhauser (1~) introduced 
an additional spin degree of freedom into the model. In field-the.oretic 
language this corresponds tO an additional SU(2) isospin. For the rather 
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special interaction considered by Mattis and Overhauser the model was still 
soluble because it could be translated into two independent Luttinger models 
and exhibits two types of collective modes, plasmons and magnons. The 
former are related to density fluctuations, the latter to spin density fluctua- 
tions. If  all possible fermion interactions are included, the model cannot be 
solved explicitly anymore since it is equivalent to an ordinary Luttinger 
model and an independent Luttinger model with a mass term. (12~ If  the 
coupling parameters are chosen so that in the second Luttinger model the 
current-current coupling vanishes, the model is again soluble. This was 
pointed out by Emery and Luther in 1974. (13~ For general coupling constants 
the spectrum can be discussed using WKB methods. ~12~ An analysis of this 
model, called the backward scattering model, has been carried through by 
Heidenreich. (1~) In this work particular care was given to the charge struc- 
ture of the fermions. In field theory the analogous model is the Thirring 
model with SU(2) isospin. The slightly more general model with an SU(n), 
n an integer, internal degree of freedom was used to analyze renormalization 
group equations. ( ~  Recently the Thirring model with an internal SU(2) 
degree of freedom, respectively the Thirring model with mass, received much 
attention because the fermions in this model can be put into correspondence 
with the quantum soliton of a boson field theory where the fundamental 
field is a solution of the Sine-Gordon equation. (~6~ 

The historical development leading to the solution of the Luttinger and 
Thirring models was long and complicated. (4,~7~ Three methods turned out 
to be successful: In the first one--used by Johnson (~8) in 1961 for the Thirring 
model--Ward identities are used to compute the fermion n-point function. 
It was not clear, however, whether the n-point function so computed is 
coming from a quantum field. The solution was therefore incomplete. In 
1965 Lieb and Mattis (6~ gave an operator solution of the Luttinger model. 
They computed the free energy, the susceptibility, and the momentum dis- 
tribution function at zero temperature. The key step in their method was to 
notice that: (1) The Hamiltonian can effectively be replaced by a quadratic 
expression in boson collective modes and charge operators; in their analysis 
they rediscovered Kronig's identity. (2) This identity expresses the free fermion 
Hamiltonian Ho v in terms of the boson Hamiltonian Ho ~ and the charges 
Q + and Q- of the fermions moving in the plus and the minus directions: 

Ho F = Ho B + (~r/L)(Q+2 + Q_2) (2.2) 

Since the interaction term in H is quadratic in the boson field too, the total 
Harniltonian can now be diagonalized by a Bogoliubov-Valatin transforma- 
tion. 

Kronig's identity dates back to the neutrino theory of light (2~ and holds 
as an operator identity. ~22~ The mystery over this identity is possibly reduced 
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by the remark that in any system of noninteracting, massless particles in 
one space and one time dimension there are massless bound states523~ 

In 1968 Johnson's partial solution of the Thirring model was completed 
by Klaiber& 9~ He constructed a quantum field giving rise to Johnson's 
n-point functions. His method differs from those already mentioned. He 
starts from classical field theory and reinterprets the solution of the classical 
field equation as a quantum field in Fock space of a free fermion field. The 
model can also be solved by the methods of Lieb and Mattis. (6~ However, 
in the case of the Thirring model an ultraviolet renormalization is necessary& a~ 

The method of Lieb and Mattis was used to compute the zero-tempera- 
ture, fermion two-point function, (24'2s~ and Johnson's method was used to 
get the zero-temperature n-point functions for the Luttinger model& 6~ 
Furthermore, the fermion two-point function for arbitrary temperature was 
found by the same method. (27~ 

Finally, the method of Lieb and Mattis complemented by the boson-  
fermion reciprocity formula, Eq. (B22) of Appendix B, was used to compute 
the n-point function of the Luttinger model for arbitrary temperature. This 
result was announced in Ref. 28 and its derivation will be the main subject 
of the following section. 

The boson-fermion relations give an explicit operator expression for 
the fermion field in terms of the boson field (collective modes), charges 
Q + and Q_,  and charge shift operators U+ and U_ (defined later). It has 
been used in one form or another by many authors, in particular, by 
Schotte, (29~ Lowenstein and Swieca, ~a~ Dell'Antonio et  al.,  ~3~ and Mandel- 
stam. (a2) We will use the formulation given in Ref. 33. 

The possibility of a (polar coordinate type) generalization of the boson-  
fermion relation to higher dimensions has been noted repeatedly in talks by 
one of us (D.A.U.) during the last few years. We give a formulation of this 
idea at the end of Appendix B. This has independently been noted by A. 
Luther. ~ 

The boson-fermion relation clarifies not only the aforementioned rela- 
tion of the Luttinger model to the Sine-Gordon model, but also its relation 
to the classical Coulomb gas. Ca4~ 

3. THE L U T T I N G E R  M O D E L  A N D  ITS T H E R M O D Y N A M I C  
n - P O I N T  F U N C T I O N S  

The Luttinger model a) deals with the thermodynamics and statistical 
mechanics of a self-interacting, one-dimensional Fermi system enclosed in 
a periodic box of length 0 < L < oo. To set up this model, we assume as 

4 Winter Workshop les Houches (1978) and Nordita Preprint (1978). 
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given an irreducible Fock system of particle (and hole) creation and annihila- 
tion operators a~*(K) and ap0c ) [and ah*(K) and ah(K)] acting on Fock space 
o~ with vacuum f2. These operators thus satisfy the usual canonical anti- 
commutation relations (CAR) together with 

%(K)f2 = 0 and ah(K)f~ = 0 (3.1) 

For technical reasons it is convenient to shift the basic momenta in the 
discrete momentum spectrum KL := (2~/L)Z by an amount ~r/L to obtain 
KL' = Or/L)Zoaa. Thus in all formulas involving the %(~) and ,~h(~) the vari- 
able ,c assumes its values in KL'. 

The basic fixed-time Fermi field depending on the space coordinate x, 
with its helicity components 4 + and ~h_, is defined as 

1 
r177 = ~/~, ~. [eiXX%(X) + e-'Zxah*(X)] (3.2) 

:t:X> 0 

and is seen to satisfy the anticommutation relations 

{r r = 0 
(3.3) 

{r ~b• = (l/L) E e'X(x-~) 
Z 

In terms of the ~,-matrices for the metric with signature (+ ,  - )  

7 o =  (~ ; ) ;  y l =  ( ? 1  ; ) ;  ~ , s = 7 o 7 1 =  ( O  1 01) (3.4) 

the Fermi current and pseudocurrent are given by 

' := ' t 2: (3.5) 
\ 4 + !  

with : : indicating Fermi normal ordering, while the corresponding charge 
and pseudocharge are 

s ;; Q = dxj~ and Q5 = dxjOS(x ) (3.6) 

In what follows it will be more convenient to employ the associated 
"light-cone combinations" 

j~ := �89 + j l )  = :~b~*~ : (3.7) 

f/ Q .  ".= d x j . ( x )  (3.8) 
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Clearly, this means that 

j o  = j ~  = j+ + j _  ; j~  = jo~ = j+ _ j _  

(3.9) Q =  Q§ + a _ ;  a s =  Q+ _ Q_ 

A more concise notation as well as more calculational details of much 
of the following are to be found in Appendices B and C, to which we refer 
the interested reader. 

If  we introduce the Fourier decomposition of the current densities via 

j . ( x )  = (l/L) ~ e'~'"j.(p) (3.10) 
PEKL 

then Q ~ = ]2 (0). A careful evaluation of the occurring infinite sums on the 
domain 9 ,  consisting of polynomials in the %*(~) and ah*(~ ) applied to f~, 
yields the basic commutation relations 

[]~(p), j ~ ( - p ) ]  = + (L/2zr)P (3.11) 

with all other commutators vanishing. (21) 
In particular, the charges Q~ commute with each other and all the 

]~(p). We conclude from Eq. (3.11) that the combinations (for p > 0 in KL) 

c(+_p) .'.= i(2~r/Lp)i/2j.( + p) 
(3.12) 

c*( +_ p) .'= - i(2~r/Lp)tl2j. (-T- p) 

are formally adjoint and satisfy the canonical commutation relations (CCR) 
on 

[c(q), c*(q')] = ~q,q. for q r 0 r q' (3.13) 

with all other commutators vanishing. 
The nature of the representation of the CCR involved here was analyzed 

in Ref. 22. It was shown that the commuting self-adjoint charges Q ~ both 
have spectrum consisting of the integers 72. As the c(q) and c*(q') commute 
with Q~, each joint spectral subspace of Q• indexed by the eigenvalues 
n~ e g, reduces this canonical system. It was found that the corresponding 
restrictions of the c(q) and c*(q') to each of these subspaces constituted 
irreducible Fock systems of the CCR with vacua f~_,~ +. 

A specific choice of f2~_ ,~ + e ~- is exhibited in Eq. (B 12) of Appendix B. 
The presence of this representation of the CCR suggests the introduction of 
the following Bose fluctuation field, which describes deviations from the 
vacua f~_ .~ + : 

~o• := ~ (2~/Zlpl)llZ[e'PXc(p) + e-'~'Xc*(p)] (3.14) 
:l=p> 0 
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From Eqs. (3.12) and (3.14) we easily deduce that 

q~• = ~ (+ 2~i/Lk)dkx].(k) (3.15) 
k r  

je(X) = (1/L)Q• -T- (1/2rr)(d[dx)7~(x) (3.16) 

The technical device that permits the complete calculation of the thermo- 
dynamic correlation functions of the Luttinger model consists of a precise 
formula, the "bosonization formula," giving the field ~b ~ in terms of the field 
~o ~ and the charge structure. This formula is derived in all detail in Appendix 
B. Here we only present the outline of the argument and refer the reader to 
that appendix for the full story. 

According to formula (B18), these two fields are related by 

[ r 1 7 7  = (3.17) 

where the second factor on the right side is scalar. On the other hand, since 
the r177 field lowers the Q~ charge by one unit, we obtain an expression which 
commutes with the charges by using U~*~:~(x) in formula (3.17) instead of 
r Here U§ (resp. U_) is the unique unitary on ~- that commutes with 
all the ~o~(x) and maps f2 . . . .  + to f~_,~+-i (resp. f~_l,~+). We also let 
U~* be the corresponding adjoints, which therefore raise the respective charge 
by one unit. This modified equation (3.17) is to be compared with the easily 
derived formula 

[ ! e - ' ~  !(x), ~o.(y)] = - i ! e - ' ~ ,  i(x)[q~(x), ~%(y)] (3.18) 

where ! ~ indicates Bose normal ordering. 
The irreducibility of the Bose Fock components of the q~+ in each charge 

sector of o~ then allows one to conclude that U~*r ~ (x) differs from !e *~ �9 i(x) 
by a function F~(x) depending only on the charge eigenvalues of each sector. 
Its explicit form is exhibited in Eq. (B21), and Theorem 1 in Appendix B 
gives the bosonizationformula for the field $ .  in the form 

~b ~(x) = U.F+(x)~e-'~' , i(x) (3.19) 

with an analogous expression valid for the adjoint field. 
We next turn to the specification of the interaction for the Luttinger 

model. Its Hamiltonian H F is formally given as 

f f f  H F = dx :~b*i 3t~b:(x) + dx dyL(x )V(x  - y) f f (y)  (3.20) 
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The interaction potential V will be restricted to satisfying the following condi- 
tions, formulated in terms of its Fourier transform: 

V(x) = (1/L) ~ L  e-'gX(~r/2) Wk (3.21) 

W~ = (W~)* = W-k (reality and evenness) (3.22) 

Wo = 0; - I  < Wk < 1 (3.23) 

[k[ W~ 2 < oe (3.24) 
k 

Now the crucial ingredient for the bosonization of the Fermi Hamiltonian 
H r is the bosonization of the kinetic energy part provided by the Kronig 
identity (see Ref. 20): 

f 'dx :~b*i 8t~:(x ) = (~r/L)(Q+ 2 + Q_2) + ~, ]p[c*(p)c(p) (3.25) 

Using Eqs. (3.15), (3.21), and (3.25) in Eq. (3.20) one easily derives the 
identity 

H r = (rr/L)(Q+2 + Q_2) + ~ lip (3.26) 
p > 0  

where 

Hp = p[(c*(p)c(p) + c*(-p)e(-p))  

- Wp(c*(p)c*(-p) + c(-p)c(p))] (3.27) 

The assumptions (3.22) and (3.23) ensure that there is a unique real Ap = h_~ 
with 

W~ = tanh(2h~) (3.28) 

In terms of these hp we define the unitary operators 

Uv .'.= exp{h~[c(p)c(-p) - c*(p)c*(-p)]} (3.29) 

An easy calculation then shows that the Bogoliubov-Valatin transformation 
generated by U~ is 

(c(-p)~ = (cosh Ap sinh A~ ~ (c(-p)~ (3.30) 
Up \ c*(p) ] Up* \sinh hp cosh ~]  \ c*(p) ] 

It will be useful to employ the abbreviations 

h. + ~- cosh ~ = [�89 + �89 - W.2)-1/~] 1~2 
(3.31) 

h~- := sinh )t~ = [ - �89  + �89 - Wp2)-1/2] 1/2 sgn W~ 
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Equation (3.30) together with the choice of Eq. (3.28) applied to the Hp of 
Eq. (3.27) shows that Hp is diagonalized by this canonical transformation 
to give 

UpHvUp* = ~,p[c*(p)c(p) + c * ( - p ) c ( - p ) ]  - % (3.32) 

where the "quasipartMe energies" are 

o~ , - - IP [  sech(aA,)= Ipl(1 - w,2) "2 (3.33) 

while the "energy shift" is 

% = Ipi - o~p = tpl[1 - (1 - wp2) 1'2] t> 0 (3.34) 

Due to the assumption (3.24), r/ = ~.p>o ~v converges to a finite, nonnegative 
value and 

U = ~ Up (3.35) 
p>O 

converges (strongly) to a unitary operator on ~ ,  which diagonalizes the 
Luttinger Hamiltonian H r to give 

H ~ UHFU * = (~r/L)(Q+ 2 + 0 _  2) + ~ o~c*(p)c(p) - ~1 (3.36) 
~ o  

We now introduce new space- and time-dependent Fermi and Bose fields by 
setting 

W~(t, x ) :=  emtUr177  (3.37) 

O ~(t, x)  ~ emtU~o ~(x)U*e -mr (3.38) 

Since W:L(t, x) is the U transform of the interacting Luttinger field 
e x p ( i H r t ) ~ ( x )  e x p ( - i H r t ) ,  it will give the same thermodynamic correla- 
tion functions as this latter field. The explicit representation of �9 a in terms of 
the c(q) and c*(q) operators is provided by Eq. (C3) of Appendix C. 

Applying the e~HtU transformation to the bosonization formula (3.19), 
we find that 

tF • x) = U~F~(x  -T- t)~e -~r ~(t, x)e -a (3.39) 

where the factor e -A results from boson Wick ordering and the constant 

A = (~r/L) ~ (o~; ~ - p - ~ )  (3.40) 
p > 0  

is finite because of assumption (3.24). 
In terms of these new Fermi fields the quantities of interest are the 

vacuum expectation values 

(f~, W~*(t, x)f~> (3.41) 
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and the thermodynamic correlation functions 

((W,~ x)) )  = Try[e-  anW,~ x)]/Tr~- e-  an (3.42) 

where ~I-%~ x) stands for an arbitrary product of finitely many W~ (tj, xj) 
and ~F~*(ts, xj) factors. 

In other words, as explained at the beginning of Appendix B and Eqs. 
(C6)-(C8), if n is a nonnegative integer and tj and xj for i ~< j ~< n are real 
numbers, % and ~-j are elements of S = {+,  - }  = {+ 1, - 1}, then 

W,~ x) = I-I ~F~l(t,, xj) [Eq. (C7)] 
J 

with 

W~(tj,  xj) = W. ( t j ,  xs) if ~j = _+ 

W~(tj, xj) = W~*(tj, xj) if ~-j = _ 

It follows from the charge structure of  the expressions (3.41) and (3.42) that 
they vanish identically unless the number of W+ (resp. ~F_) factors in LF~~ 
equals the number of  W+* (resp. W_*) factors. This happens precisely if 
:~j aj = 0 and ~j  aFJ = 0. Accordingly, we shall assume from now on, 
without explicit mention, that these conditions are satisfied for W~~ 

As shown in Appendix C, the relevant Bose expression for the calculation 
is [see Eq. (C8)] 

1,n 

Y 

= ~ [%:(t, x)e(q) + E*;(t, x)c*(q)] 
q # o  

with 

%~(t, x) ~ \ L - ~ J  ~ %{exp[ - i (wj j  - qx~l]Ih~ sg"" 

The charge structure under the above assumption on ~ .d  is reflected in 
[Eq. (C10)] 

Q,o(t, x) = (2w/L) ~_, %(tj - "rsxj)Q,, 
J 

and 
1,11 

t 
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In terms of this notation the bosonization formula implies that [Eq. (C14)] 

~F,*(t, x) = (f2, tF,o(t, x)f2) exp(iO,*)(t, x) iexp(iq~,")i(t, x) 

and [Eq. (C15)] 

log(f~, ~F.o(t, x)f~) 

1,. ri~ r - A] 
= E [ r  (~ - -~x~) - ~logL 

with Av,~ given by Eq. (C12). 
Thus, in view of Eqs. (3.26) and (C14) we find 

Trs~[e- emF,"(t, x)]e- e, 

= ( a ,  ,v ,o(t ,  x ) n )  

x TrQ~{exp[--/3L(Q+2 + Q_2)] exp[iQ o(t,x)]} 

x Tr~@xp[-flq~o~%C'(q)c(q)]iexp(i~,*)i(t,x)} 

where the charge trace and the Bose sector trace can be computed explicitly 
in terms of Jacobian theta functions and the confluent hypergeometric func- 
tion, respectively, as shown in Eqs. (C16)-(C23). The special case W~ ~ = l~- 
gives the expression (C24) for Tr~ e -an, which after division according to 
Eq. (3.42) yields the final result: 

log((~F.o(t, x)55 - log(n, W.o(t, x)f2) 

= 4 
(-)" e -  B(nlL)n 

n = l  iv/  1 - -  e -B(2z/L)n 

x sin 2 n 2  ~ a j ( x j -  tj) + sin n s  
~j= + 

exp(-fic~ I%:(t, x)l 2 [Eq. (C27)] 
- E 

q ~ 0  

APPENDIX  A. ON THE RELEVANCE OF T W O - D I M E N S I O N A L  
RELATIVISTIC FERMION FIELDS FOR SOLID 
STATE PHYSICS 

In the following we consider a box of length 0 < L < ~ .  We prove that 
the Hamiltonian H0(~) of a free, nonrelativistic fermion field ,~ with mass 
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m > 0 and spin S is approximated by the Hamiltonian Ho(~b) of a free, 
relativistic fermion field r with mass m = 0, spin �89 and isospin S. 

Definition 1. r x) can be written as 

r x) ~ (1/V/L) ~ e-'(~k~-kX)a(k, s) (A1) 
k , S  

with oJ~ := k212m. 

Remark 2. (a) Without further notice it will be assumed that the 
fermionic momenta take their values in KL' = (Tr/L)Zodd. 

(b) The operators a(k, s) obey the CAR. 
(c) r and H0(r = ~k.s ,~ka*(k, s)a(k, s) are operators on Fock space F 

with vacuum ~(a). 
(d) From now on we suppress all spinor indices. 

Def in i t ion  3. r x) can be represented as 

r x) ~ (1 [V/-L) ~ [exp(-ikx)]a(k) (A2) 
k 

with kx = ]kit - kx. 

Remark 4. (a) The operators 

a ( k )  = 
\a+(k)] 

obey the CAR, where all isospin indices have been omitted. 
(b) r and 

Ho(r = ~ ~ ~-ka~*(k)a~(k) 
7 = •  k 

are operators on the Fock space F | F with vacuum ~(a_) | ~(a+). 

Definition 5. To construct a unitary transformation from a sub- 
space of F to a subspace of F | F we define the following projection opera- 
tors: On F 

P(e) := ~ P~(e) (13) 

with 

O n F |  

P~(E) ~- k ~ a*(k)a(k) 
I - z k F I  < e  

Q(,) ~ ~ Q,(E) (A4) 
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with 

Q,(,) := 

where ~ - e ( + , - } ,  k~KL',  
momentum. 

--kF 
J ) 

\ J 

0 

a,*(k)a,(k) 
Ikl  <E  

and kF ~ KL ~- (2~r/L)Z 

i F  

l 
( ) 

0 

denotes the 

L 

E 2  
L 

a _  

Fermi 

K 77 a+ 
L 

Obviously the following statement holds: 

Lemma 6, For E > 0 sufficiently small, the operator J, defined by 

J: Q(a) ~ f2(a_) | f2(a+) 

J: a(rkF + k) ~ a~(k) = Ja('ckF + k)J- 1 

generates an isomorphism from 

P(,)F--~ Q(QF | F 

Remark 7. In the following we identify both subspaces. 

Theorem 8. Let 

H(4, e):= ~ P,(QHo(4)P,(e) 

= ~ ~ oJ~a*(k)a(k) 
Ik -zHFI  <E 

and 

H(~, ,) ~ ~ Q,(e)Ho(~b)Q,(Q 
z 

(A5) 

= ( A 6 )  
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be the restrictions of Ho(r and Ho(r to the subspaces P(E)F and Q(E)F | F, 
respectively; then 

k~ k~, 2 
H(r e) = m H(r E) + ~-~ Q(Q + R (A7) 

ProoL 

with 

with 

L )  2 1 ca (A8) 

(k + rkr) 2 a*(k + rkF)a(k + rkr) 
H(~, e) = ~, Ik~<, 2m 

kr 2 k 2 
: ~ ,k~<�9 (r ~-~k+ -~m + -~--~)a**(k)a,(k) 

kF H(r e) + k~2 H(r e) = m 2-~ Q(Q + R 

Definit ion 9. 
deviations from the Fermi sea, 

a(k)a(c) = 0 

a*(k)f2(c) = 0 

we define as usual new operators c(k), 

kl~< k2 ( L ) 2 1  Ea 

I �9 

Since one is interested in states f2(c) that are small 

for k r  

for k ~ Sr  
(A9) 

fa(k) for k r Sr 
c(k) .~ l a*(-k) for k e S F  (AIO) 

and the new vacuum ~(c), c(k)f2(c)= O. The set Sr denotes the Fermi 
sphere ( - k r ,  kr). 

l e m m a  10. We define the particle [resp. hole] destruction operators 
b+(k) [resp. b_(k)] in the Dirac formalism as 

b+(k) "~ a~gn~(k), b_(k) ~ a~,~n~(-k) (All)  
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with the vacua f~(b,); b,(k)f2(b,) = 0 and T ~ { + , - } .  Then the following 
diagram is commutative: 

g" I x I 

--kF () 

nonrelativistic 
particle-hole 
transformation 

J 

l , �9 f ~ ( a )  

kF 

.......... L .............. 

- kF 0 k~ "-v..-" 

t~ ~ P-(a +) 

- - " " " ~ ~  relativistic 
particle--hole 
transformation 

! ' - , - - -  . . . . . . . .  , ~ b _ )  

' ~ (c )  
, , , ,  . . . . . . . .  : .- ~ b  +) 

The simple proof will be omitted. 

Corollary 11. Let/7o(q~, ~),/-7o(~b, E), 0(,), /7(,), Z(x),  and C(kF, E)be 
defined as 

/7o(~, ,) = ~ ~ oJk[1 - 2xF(k)lc*(k)c(k) 
I / c F + ~ k l  < E  

/7o(~b, , )~- ~ ,gl~<, [k[b,*(k)b,(k) 

Z (Al:) 

Z ( x ) ~ ---ff - ~  2 x + 1 

L 
C(kF, ,) ~ Z(kF - ,) - Z(kF) + ~ Fmm ('~' - 3kF, + 3k~ ~) 

where the characteristic function xF(k) is one for k e SF and zero otherwise. 
Then 

kF ~ kF 2 
[/o(~, ,) = -~ Ho(~ b, ,) + ~-~ 0( ')  + J~(') + C(kr,  ,) (A13) 

holds. 
The proof is a direct consequence of Theorem 8. 



42 R. He idenre ieh ,  R. Seiler, and D. A. Uhlenbrock 

APPENDIX  B. B O S E - F E R M I  RECIPROCITY 

In order to enhance the calculational efficiency in what follows, we will 
use the cyclic group of order two S ~ 7//277 to label various dichotomic 
choices. Thus, depending on the context of its use, the identity element of S 
will label a particle, a creation operator, a "negat ive" helicity component, 
a field moving to the " r igh t "  (with respect to an arbitrary but fixed choice 
of  what "negat ive" and " r igh t "  is). Correspondingly, the nontrivial element 
of  S will label a hole, an annihilation operator, a "posi t ive" helicity com- 
ponent, a field moving to the "lef t ."  We also adopt the convention that, 
when a (nonvanishing) real variable occurs in the place of an S variable, 
the sign of the real variable is to be understood, with a positive sign corre- 
sponding to the identity of S. 

For the fermion creation and annihilation operators this convention 
means that we write 

a + + , a + - , a _ + , a _ -  for %*, %,ah* ,ah  

The irreducible Fock nature of  this system is therefore expressed by 

{~(K), ~;(K')} = as,_o, ~,~, ~,~, (B1) 

a~- (K)f2 = 0 (B2) 

is dense in J,, where ~ is the linear span of the monomials 

1,r t  

aT + (K,) f2 (B3) 
J 

The definition of the time-dependent, free Fermi field corresponding to 
Eq. (3.2) can be rewritten as 

(r -)] 1 [O(-K) O(x) ][e ~'~-['~lt' ~ + - ( K ) ]  (B4) 
~b+(v+)] = a / L ~ "  \ 0(K) O(-K)] \e ''~+l~lt) ~_+(-K)] 

where, for ~- ~ { _+ } = S, v ~ := x - ~-t and 0(K) ~ �89 + sign(K)]. 
In terms of r - r and r - r this equation and its adjoint can be 

condensed to read 

1 ~ e_i,~v.a~,ff.rlKl~ ~a(V~) = " ~  ~ ,c , , ,, (BS) 

The CAR relations of Eq. (B1) imply that 

1 ~ exp[ir(v ~ _ V,r ] {r r = ~~ o. 8~.~. Z 
/r 

(B6) 
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The representation of Eq. (3.8) of the charges and that of the Fourier 
components of the currents Eq. (3.10) take the form (on the domain ~)  

h 

i t -  h = ' ~ p  

A careful evaluation on ~ leads to the commutation relations 

[L(P), L,(P')] = (L/2~-)~p ~.~, 3,._~, (B9) 

From this equation it follows immediately that the operators c(p) and c*(p) 
defined (on ~ )  by 

c~(p) := -ia(ZTr/LlPl)~/2](-~rp); p r 0 (B10) 

actually satisfy the CCR relations 

[cO(p), c~'(p')] = or' 3o._o, 3p.p,; p r 0 :~ p' (Bll)  

For later reference we write down the Bose vacuum state for the (n_, n+) 
charge sector of o~: 

f2,_.,+.~- I-~ a+-(K-) ]--I a++(K+)f2 (B12) 
-(2~/L)ln- [ < t c _  < 0  (2~/L)ln+ I > g : +  > 0  

where the ordering in each product is chosen such that the absolute values 
of K+ and K_ decrease from left to right. 

Turning now to the Bose field, we see that the definition of Eq. (3.14) 
amounts to 

q)~"(v ~) = ~ (2~r/Lp)l/2e-'U~'~'c"(~-p) (B13) 
p > O  

q~(v ~) = ~ (2rr/Llpl)l/2e-~P'~eP('rlpl) (B14) 
p r  

Defining 

sin[n(2~r /L) ~ ] 
A,.,,(~) ~ - 2 r  8, ~, 

' n=l F/ 

) = ~-3~,~, - f f ~ : -  rr if 0 < ~ < L  (BI5) 

it follows from Eq. (B14) that 

[~o~(v'), ~,(v'~')] = - i A~.~,(v ~ - v '~') (B16) 
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If U, ~ denotes the unique unitary operator on ~- that maps each f2 . . . . .  to 
f~_ +~,,_.o, n+ + ~ § .~ and furthermore commutes with all ~o~,, then (G~) * = 
G-  ~ and we find 

U~Q~, = (Q,, - ,r 8~,r ~ (S17) 

L e m m a  1. The fields G ~ and ~0~, are related by the formula 

[~b~~ ~0r162 = io~r ~%(v'~')] (B18) 

Proof .  A straightforward but tedious calculation involving Eqs. (B8) 
and (B10) yields that fo rp '  > 0 

[aK~(zl;~[), cr = i(2~r/Lp')~/2r ' 8~.~. aKa++~;~;(z'l~h + cr'p'l) 

(B19) 

According to Eqs. (B5) and (B14), this implies 

1 (2=)1,2 
= ~ ,'~>o ~ '~  exp(-i;ta~'vO 

~e 

x [exp(-  i,~'r c"(r  

�9 2~r ' 3  1 

p ' > 0  tq ~s 

x {exp[ia'-rp'(v' - v'~')] e x p ( -  hrzKv0}=~(~ I,r 

2~r 
= ia~b'r p>'~o rr' ~"~'-L-~,'_,~ exp[ia"rp'(v~ -- v'r (B20) 

where in the resummation we have set ,r = ~ + or 
This result in turn implies Eq. (B18) in view of Eqs. (B15) and (B16). 

QED 

In the following we will make use of  the function 

F ,,(vO ~ _ ~  ( _  )6.. . Q_ e x p [ _  icr.r 2= ~ [ - 

which is scalar in each charge sector of ~ 
The relationship between the ~ ~  and ~ fields is made explicit by the 

following (free field) bosoniza t ion formula:  

T h e o r e m  A.  

~,~ 0 = U~OF~'(v ~) i e '~ i(v') (B22) 



The Luttinger Model 45 

Proof.  For scalar [A, B] the identity [e ~, B] = eA[A, B] is valid. 
Accordingly, we deduce that 

Since 

[~ e ~ ,  i ( r  s~,(v'~')] 

= [er176176 ~r162 

= [e~,~t(vO, ~,(v '~') le~;-(vq + d~t(v~)[d~ S0,,(v'~')] 

= i e  i e '~z,i(v,)[so~(v~), S0~,(v'~')] 

this result implies the relation 

[( ! e ~ ,  ~) - l(v~), ~r = - ia(~ e '~176 ~) - l(v*) [~o~(v~), cpr162 

which in conjunction with Lemma 1 of this Appendix shows that the function 

F,a(v ') :=-- U~- a~za(V')( i e~a~% : ) -  1@,) 

commutes with So,,(v'*'). Since, by construction, F,~(v ~) maps each charge 
sector of o~- into itself, the irreducibility of the qo fields in each charge sec- 
tor (22> shows that it depends on the charge only. Its value on the (n_, n+) 
charge sector is hence given by 

( a  . . . . . .  F,~(r +> 

= < u ~ a ~ _ , ~ + ,  4,~(v~)a . . . . .  > 

A 

where we have used the detailed form (B12) of the Bose vacua f~ . . . . .  . Since 
the operator form of this last expression is incorporated in Eq. (B21), we 
have thus deduced Eq. (B22). QED 

The bosonization formula (B22) can be generalized to more than two 
space-time dimensions. The method used is a straightforward reduction to the 
two-dimensional case and will be explained for the case of four space-time 
dimensions. 

We start from a two-component fermion field r that is a solution of 
the Weyl equation and describes a particle with positive and an antiparticle 
with negative helicity, 

~b(x) = (l/L) 3/2 ~ {[exp(ikx)}p(k)%(k) + [exp(- ikx)]p(k)ah*(k)} 
k 

(B23) 
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The sum runs over k's in (Kz') 3. The spinor p depends only on the direction 
of the momentum k = ke, e = (sin ~ cos % sin ~ sin % cos 8); a possible 
choice is 

p(e)= ~'exp(-i~o/2) cos(~/2)] 
\ exp(igo/2) sin(~/2) ] (B24) 

We reorder the summation in (B23) as follows: 

r = (l/L) a/2 ~ p(e) ~ ({exp[ik(ex)]}%(e, k) 
e h: 

+ {exp[- ik(ex)]}ah*(e, k)) (B25) 

The first sum runs over a discrete set on the 3-sphere and the second one over 
the positive elements in Ks where L(e) = L cos v a is the volume cutoff 
of the fermion field r y) in two space-time dimensions defined by 

r y) = (1/V'L) ~ (eikY%(e, k)  + e-~Yah*(e, k)) (B26) 
k 

Clearly the fermion field r is now a sum over the family of two-dimensional 
fermion fields with a spinorial weight factor, 

L, 1 ( ' ~ )  ~/2p(e)r _ (B27) r = ~ (ex)) 

The r y) anticommute for different values of e. They can be rewritten 
in terms of boson operators due to formula (B22); this leads to 

r t) = ~ - -  p(e)U+(e)F+(e, t - (ex))ie-~+ ~(e, t - (ex)) 

(B28) 

q~+ denotes the scalar potential of the current belonging to the corresponding 
two-dimensional fermion field. 

For computations it might be more convenient to scale the fermion fields 
~b + (e, y) so as to have a cutoff parameter independent of e. 

Finally, Kronig's identity generalizes to the higher dimensional case as 

H~162 = H~ + L-~  Q+2(e) (B29) 

A P P E N D I X  C. I N T E R A C T I N G  F IELDS A N D  S T A T I S T I C A L  
A V E R A G E S  

The interacting Bose and Fermi Heisenberg fields of the Luttinger model 
are defined as 

q)~"(t, x) := emtUq~(x)U*e  -m~ (C1) 
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and 
~Ffl(t, x ) :=  emtU~fl(x)U*e -~m (C2) 

With the aid of Eqs. (3.30) we deduce that 

/ 2= ~ 1/~ 
O,"(t, x )=  ~ t~]q]) {exp[t(sgn q.coqt - t~rlq[x)]}h~qcq(/~rq) (C3) 

q,o 
Conjugating the bosonization formula (B22) with emtU, we obtain the 
modified (interacting field) bosonization formula 

TJ ( t ,  x) = e-AU~F~~ x) !d~i ( t ,  x) (C4) 

where q5 = ~ ,  q5, and 

p~o 2= - 2  = p ~ o (  1 ; )  (C5) 

This last term results from the Bose normal ordering of the (I) terms and is 
finite by the assumption of Eq. (3.24) on the interaction. 

To facilitate the writing of formulas in the computation of the thermo- 
dynamic correlation functions, we introduce the following notation. For any 
natural number n, if crj, rj, tj, and xj are given for 1 ~< j ~< n, we define 

J~ := {j/rj = _+} (C6) 
1 ,n  

O'j �9 ~"(t, x) ~ ~F~(t,, x,) (C7) 
J 

] , n  

qb~(t, x) = ~ %q~,(tj, xj) = ~. %"~(t, x)c"(q) (C8) 
j / t , q r  0 

,;."(t, x) LL- ! , ff  jei#(OJ qtt - qxj)h~qJq (C9) 

X,n 2~T 
Q~,(t, x) := ~ --~ aj(t i - Tjxj)Q~j (C10) 

In order to deduce a manageable form of the bosonization formula for ~F, ~ 
we compute with the aid of Eq. (B17) that 

- o -~"  ~] [ G G  (tj, x3] 
\ Y ./ 

[ ( )] 
where E = 3~j,+(Q_ + ~+~," 3~,_.r In terms of 

2~r ,,- ~(~01_ q~)!,~ql,~" q (C 12) 
qr 
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the Bose normal ordering yields the formula 

~-~ ~ exp(i%qbv) ~(t~, xj) 
] = 1  

= exp - %~kA~j~(tj -- tk, xj -- xk) !exp(i~,~ x) (C13) 

Due to the fact that H has a purely Bose expression, the vacuum expecta- 
tion value and thermodynamic average of ~,~ x) will be nonvanishing 
only if, for each z value, the number of  ~F~ + terms equals the number of  
~F,- terms in this product. This happens precisely if 

~-~ Ug!= id~ 
J 

In the following we will assume that the ~j. and ~-j. have been chosen to satisfy 
these conditions. In particular, this implies that J+ has an even number of  
elements and hence that 

n 

l-I(_)0,,.+Q_ = (_)iJ§ = 1 
j = l  

Using Eqs. (C11) and (C13), we find that 

W,~ x) = (f~, W,'(t, x)f2) exp(iQ,*)(t, x)iexp(iqb,~)~(t, x) (C14) 

log<a, tF.~(t, x)O) 

= i L ( t  s -  r j x j ) -  ~ l o g L - A  
J 

+ ~ ~j~k i~r~j ~v. + ~ . -  + i (tj - ~jx~)~,j.~ 
J < k  

and 

- A~,~(ts - tk, xs - xe)] (C15) 

If fl > 0 is the inverse temperature the thermodynamic correlation functions 
involve the traces (in terms of obvious notation for the _+ charges) 

Tr~{[exp(-flH)l~F.~(t, x)} 

= [exp(fl~7)](f2, W.*(t, x)f~) 

x T r + [ e x p ( - f l L Q + 2 )  exp(iQ+~)(t,x)] 

�9 

xTrB(exp[--f lq~oOJqc+(q)c-(q)]iexp(iq) .~ (C16) 



The Luttinger Model 49 

The charge traces Tr ~ are easily evaluated in terms of the third Jacobian 
theta function [see formula (16.27.3) of Ref. 35] 

[ql < 1 (C17) u~s(z, q) ~ 1 + 2 ~ q,2 cos(2nz); 

to give 

7/" 2 L .iE] ~- =n~ exp(-[3~ne. )exp[i ~ cr, 2-~(t,-T'xj)n• 

= ea ~ ej(b. ~ xj), exp - f l ~  
i e ]  ~: 

On the other hand, due to Eq. (C8) the Bose trace is found to be an infinite 
product 

Trn(exp[-fl ~ow~c+(q)c-(q)]iexp(iq~,*)~(t,x) ) 

= 1--[ Trq{exp[-fl~ c+(q)c-(q)] exp[ie+~a(t' x)c+(q)] 
q r  

• exp[i~z~~ x)c-(q)]} (C19) 

Noting that E~* = (Eq+~) *, a typical factor in (C19) is evaluated as follows 

Tr(e - B~c + c - e~ * ~ * et~ - c -) 

= ~ (n!)-le-B~ +n~, e~,*r 
n>~O 

= ~ (n!l-le-a~((c + - ie-lnf], (c + + i,-)nf]) 
n >~o 

(7)(:) = ~ ~ (n!)-le -a~ ' '  (_i.-),(ie-lm(c+O,-',n, c+(.-~,f~) 
n>~O m , l  

= ~ ~ ( - )  mr + m)!e_B,,+,.,,ol~+lzm 
l! mt m! l~>O m>~O 

= ~ e-B~'IFI(I + 1; I; - e - ' ~ k + l  =1 

where [see formula (6.1.1) of Ref. 35] 

~; (a).z" (C20) ~F~(a; b; z) := z.,~(b~nV 
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with (a), = a . ( a  + 1) .-. (a + n - 1) is the confluent hypergeometric 
function or Kummer  function. 

According to formula (6.4.3) of  Ref. 35, 

1Fl(a; c; zz') = z -~ 
(a). (z 1)" 

.=o n! z" 1Fl(a + n; c; z') 

z - 1  
- z ' =  

Z 

we obtain by identifying 

a = c = l ,  

that  the above trace equals 

(C21) 

e_fl~ ~ ) 
z l F l ( 1 ; 1 ; z z ' ) = ( 1 - e - B ~ ) - l l F  1 1 ;1 ;  1-eB~]~+/~ 

= (1 - e -B~)- i  exp 1 - e  B~ [e§ (C22) 

since 1F~(1 ; 1 ; z) = exp(z). 
Collecting the results in Eqs. (C18), (C19), and (C22) and inserting them 

into Eq. (C16), we find that  

T r y [ e -  ~mF."(t, x)] 

= eBn(f~, ~F.~ x)f2) 

x 3s (~ri. J~J+ %(tj-xj);e-a~/a)33(L y~s~'- %(tj+ x j ) ; e  -B~zL) 

q~o 1 -- e - ~  

As a special case of  formula (C23), we find for the empty product  (n = 0) 

T r ~  e -B" = ea'[v~3(0; e-B~/z)] 2 ~ (1 - e-B~q) -1 (C24) 
q 4 : 0  

According to formula (16.30.3) of  Ref. 35, the Jacobi theta functions satisfy 
the identity 

oo 
&3(a + 13; q) 4,__~ 1 ( - q ) "  

log v~3( ~ /3; q) = n - -  = 1" ---~-" sin(2na) sin(2n13) (C25) 

Choosing a = fl = 7/2, this leads to 

v~3(7; q) 4 # 1 (_-q)___~" 
log v~3(0; q) "--, n 1 - q2, [sin(nT)] 2 (C26) 

r ~ = l  
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Using Eqs. (C23), (C24), and (C26), we finally conclude that 

log((~"( t ,  x))) .'= log{Tro~[e- nmF,~(t, x)]/Tr~(e- ell)} 

= log(g2, qP,~(t, x)f2) + 4 k (n)"  
e -  BOzlz)n 

n = 1 I - -  e -  B ( z I L ) n  

) x sin n ~ asv s + + sin 2 CrsV s- 
j e]  + 

e-e% i,:o(t, x)l ~ 
- ~ I -- e----~% q r  

(C27) 

APPENDIX D, APPLICATIONS OF THE T H E R M O D Y N A M I C  
n-POINT FUNCTION 

In this appendix we apply Eq. (C27) in order to calculate the momentum 
distribution at finite temperature, the time-ordered, one-particle Green's 
function, the density correlation functions, the susceptibilities, and the pair 
propagator. 

C o n v e n t i o n  1. We set Boltzmann's constant kB equal to 1. Then 
/3 := T -1 is the inverse temperature and ((I-i~=1 ~ ( h ,  x0)) (~, r~ = +) 

0" t denotes the thermodynamic expectation value of I-IP=I ~F~,(h, xi) in the 
Luttinger model, i.e., 

T~'(h, x0 := Tr~ e-eHI-I  T~'(h, x0 Tr~(e -e~) (D1) 
l = l  L i = 1  

Def in i t ion  2. The thermodynamic momentum distribution, i.e., the 
mean number of particles of momentum q e Kc at temperature /3-~ is 
defined by 

i ~L  /*L 

n(q' fi):= I_,|  dx | dx' e -'q(x-x') 5 I,(x, x',/3) (D2) 
,SO -/0 

where 
I~(x, x',/3) ".= ((~F,+(0, x)~F~-(0, x'))) (D3) 

Corol lary 3. 

I~(x, x',/3) = L-1 expI4 ~ ( -  )~ e-~sL)~ 
,~= 1 n 1 - e-B(2zlL)n 

• [ s'n t r  x) + sin 2 - - x '  1 - e  

4~- [1 - cosp(x - x')] cosh 21p 1 - e-e~ x exp{-  ~o L-- ~ 

x e x p { - ~ o ;  [ 1 -  c o s p ( x -  x')](sinh )t,) ~) (D4) 
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Remark 4. (a) 

I,(x, x', fl) = I_ ,(x', x, fi) (D5) 

(b) For fl ~ oo only the boson part of  I,(x, x', fi), 

4rr - x')](sinh hp) 2} e x p ( -  >~0Fp [1 - c~ 

coincides with the results obtained by Lieb and Mattis (6) and Gutfreund 
and Schick, (5) where the Fourier transform of I(x, x', fl --> oo) is computed 
explicitly. The remaining differences are due to the charge terms. 

Coro l l a ry  5. Let the time-ordered, one-particle, finite-temperature 
Green's function be defined as 

Gr(t, x,/3) ~ - i ~ ((T(W,- (t, x)~F, + (0, 0)))) (D6) 

where T denotes the fermion T-product; then 

(a) ((~F,-(t, x)~F,+(0, 0))) 

= L-1 exp T ~'v" + 4 . - -  v- n=z n 1 -- e -t~(2n/L)n sinz 

ox [_ Z0  ,,cos  - 
I 

e -  Bop ] 
+ (sinh hn)2[1 - cos(c%t + prx)]} 1 --'~-~o;] 

(b) 

[p>~o 2w h~)2e-,(o,t - ~tx) x exp ~-~ {(cosh 

+ (sinh ~,)2e-'~%'+"x) - 2(sinh ~,)2]} 

Gr(t, x, fl) = - i ~  [8(t)((tF,-(t, x)W,+(0, 0))) 

- 8 ( - t ) ( ( (W,- ( t ,  x)W,+(0, 0))))*] 

Remark 6. 

(D7) 

(D8) 

The free-particle, zero-temperature Green's function G~ x) 
can be derived from (D6) in the thermodynamic limit L ~ oo under con- 
sideration of two boundary conditions: 

(1) G~ x) - G~  x) = - i  3(x) (D9) 

(2) The analyticity property reads(~~ for Re t > 0, the function G~ 
can be continued analytically from the real axis into the right lower quadrant 
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of the complex variable t (Re t > O, Im t < 0), while for Re t < O, G~ can 
be continued analytically from the left semiaxis into the left upper quadrant 
(Re t < O, I m t  > 0). From this one obtains 

1 1 
G~ x) = ~ x - t + i 3(t) (D10) 

where 8(t) ~ 8 sign t, with 8 > 0. This is in agreement with the results 
obtained by other authors. (25-27'am 

Corollary 7. Let the density correlation function be defined as 

&,, , (x ,  t, [3) (Dl l )  s~(~, t, [3):= ~ 

with 

then 

(a) 

Sg,(x,  t, [3) ~ O(t)((j~(t, x)j,,(O, 0))) 

S~,(x,  t, fi) := 0 ( -  t)((j,(O, O)j~,(t, x))) 

S:~,(x, t, [3) = O(t){rr '  1 ~ o  [P[h~Ph;'~ 1 
�9 ~ I - e - a %  

x [e-a%et%te -~p*x + e-~%te *p*'~] 

(b) 

(D12) 

1 d o~a(0, e- e(~Iz))t (D 1 3) L ~ 48 

], S~,e(x, t, [3) = 0 ( -  t) ~(t) S,,, ,(x, t, f3) (D14) 

R e m a r k  8. SG,(x ,  t, [3) can be obtained either by applying the thermo- 
dynamic n-point function or by inserting jr(t, x)  into the definition of 
S ~ ( x ,  t, fl), where j ,( t ,  x)  is the Heisenberg operator of the free particle 
current j ,(v').  

Definition 9. The Fourier transform of <> S,a,(x,  t, fi) is defined as 
(q E K~) 

~ f: S~,~,(q, t, [3) ~- dx  e-~qxS X (x t, fi) (D15) 

Corollary 10. Let S~, (q ,  t, [3, 7) for r/ > 0 be defined as follows: 

(a) S~,,(q, t, [3, 7) ~ O(t)rr' lq] 1 rh-,qh-,'qo-e%,*tr +,,, 
2rr 1 - e -a% t"-zq'*-zq ~ ~ q 

] ~ ' q I a ~ q  p - i t ( c O  - -  iv/)] (D 16) 
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(b) S~,,,(q, t,/3, '1) := 0 ( - t ) r~"  G[ql 1 - le_B% [h,qn,qe'q""q~- ~ e - { t ( ~  +,~) 

h-~'qh-~q ,~t(%-i.)l (D17) 

Then 

Remark 11. 
conditions 

<> x S,,,,(q, t,/3) = lim t,/3, s,,,,(q, '1) 
",1"0 

The infinitesimal V > 0 assures the physical boundary 

lim S >(q, t,/3, '1) = 0, lira S <(q, t,/3, '1) = 0 (D18) 
t ~ + ~  t - -~  = - oo 

Corol lary 12. Let 

jo SG,(q, co,/3, '1) := dt e~tS > (~ , . , , ,~, t,/3, '1) 
(D19) 

f f t,/3, '1) S~e(q, co,/3, ~7) := dt e~tS <~,,,,~,(~ 
oo 

be the Fourier transform of  <> S,.,.(q, t,/3, '1); then 

S'>'"(q'co' /3 ' '1)=-~'rlq" 2~ril - le_e~, [h-,qh-, 'q,,- B%..__d_+__~qT~_ 'q'" - ,q ~ + ~ _----h"qh"q"q'q]coq 4- i,  

I q l  1 
SG,(q, co,/3, "1) = + "~' 2~ri 1 - e-  ~ 

F hzqhr'qo-flc% h_~,qh_z,q ] 
x L co~, i ' l l G - - - - - - =  + - - - -  co  4- coq -- i'1J 

(D20) 

Remark 13. For /3 ~ oo our results agree with those obtained by 
Dover. (2a) He also discussed the unphysical plasmon pole co = -coq + i'1. 

Corol lary 14. (a) The susceptibility x(t, x) without scattering across 
the Fermi surface 

x(t, x) := - iO(t)  ~ (([j~(t, x),j~,(0, 0)])) 
z ~  p 

(D21) 

is given by 

-O(t)  1 ~ o  [P[(h~v - h;D2 sin(~~ - px) x(t, x) = (D22) 
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(b) Let x(0, q) (q E KL) be the static susceptibility, with x(O,q) 
lim,.o~-~0 X(~ + i~/, q) and 

f_'-~dtf: x(w + iT, q) := dx e- r + ~")tx(t, x) (D23) 

Then 

holds. 

Remark 15. 

1 1 
X(0' q) = 7r 1 + (2/~)~(q) (D24) 

X(0, q) was first calculated by Lieb and Mattis. (6) 

Then 

P(t, x) = x~(t, X)IA~-~-aT (D28) 

Remark 18. (a) The boson parts of x~(t, x) and P(t, x) are compatible 
with the results of Luther and Peschel (37) if in their formalism the parameter 
a is taken to be zero. 

(b) The power law behavior of XF and P (see Ref. 37) cannot be verified 
until the thermodynamic limit L ---> oo is performed. 

and reads 

xF(t, x ) = 2 0 ( t ) I m ( L  -2 exp( -2~i-L-- t) 

xF(t, x) := -- iO(t)(([~t ~_ + (t, x)tF + -(t, x), tie+ +(0, 0)tF_-(0, 0)])) 
(D25) 

• exp{ 4 ~ ( - ) ~ = z  n 1 --e-~(~'L)~e -~(~'L)~[sm[ ,:,[n~ )~_L_ v+ + sin" 2( nn~-v-)]} 

{p~o 2L--~P] e2ap(e-~(%t-Px) 1)]t) • exp [1 + - (D26) 

Corol lary 17. Let the pair propagator P(t, x) be defined as 

g(t, x) := -iO(t)(([~F_-(t, x)~F+-(t, x), ~F+ +(0, O)W_ +(0, 0)])> 
(D27) 

Corollary 16. The susceptibility xr(t, x) with scattering across the 
Fermi surface is defined as 
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